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Assuming the ^-decaying nucleon to move in a simple scalar poten
tial, the F'oldy-Wouthuysen transformation is used to obtain an equi
valent non-relativistic form for the pseudoscalar interaction. The effect 
of the recoil of the nucleus has been taken into account. The observed 
shapes of allowed /hspectra permit an estimate of an upper limit to the 
pseudoscalar coupling constant, which is difficult to reconcile with the 
value derived from the analysis by Petschek and Marshak of the Rali 
spectrum. This conclusion is dependent on the assumption of a simple 
nuclear potential.

The pseudoscalar ^-interaction dillers from the other four types 
of interactions in not possessing any non-relativistic analogy.

The matrix elements therefore may depend essentially on the 
nuclear forces acting upon the decaying particles, and great care 
is needed in the derivation of equivalent non-relativistic forms 
which permit a comparison with other ß-decay interactions. The 
significance of the pseudoscalar interaction for the shape of 
certain forbidden spectra has recently been suggested1).

'fhe contribution of the pseudoscalar interaction lo /1-tran- 
sitions may in the plane wave approximation for the leptons be 
expanded as follows:

/■| ft'-, AI ; - < /I An I ' > /-o + '■ < f\fa*  I ' > U bo (1-1)

+ </1ft'5'-i|i>(V(i,)o (1.2)

+ ' < /■ I AXr, (r, ‘ rs) IÍ > ( '7 ( V Å /.)„ (1.3)

where |z) and arc the initial and final states of the trans
forming nucleus and L is the lepton covariant y>*ßy 5(pv. 'fhe 
index (I means that the functions will be evaluated at the position 

O A.. G. Petschek and R. E. Marshak, Phys. Rev. 85, 698 (1952). 
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of the nucleus. The operator Q, which transforms neutrons into 
protons, is omitted in the following. The first two terms (1.1) 
contribute to first forbidden dJ = () (yes) transitions. The third
(1.2) contributes to allowed transitions Zl./ = 0, ±1 (no), 
whereas the fourth contributes to first forbidden A J = 0, ± 1, 
± 2 (yes) transitions.

An especially well suited method for estimating the nuclear 
matrix elements in (1) is provided by the Foldy-Wouthuysen 
transformation2’ The Foldy-Wouthuysen transformation also 
proves very useful for the evaluation of other relativistic matrix 
elements which occur in /^-theory. The approximations made by 
Ahrens and Feenberg1’ in a similar evaluation stand out clearly 
when this method is used.

The Hamiltonian to be transformed is

H — Ho + Hint + (2)

where //0 is the free particle Hamiltonian for the nucleons

- (—a-p — ßM)i, Hinl is the nucleon-nucleon interaction, Hß 
i = 1
is the ^-interaction f/5/?y5A, and H^v is the free lepton Hamil
tonian. The usual nucleon-nucleon interactions do not contain odd 
operators, i. e., operators which mix large and small components.

Treating Hß + H^' as a perturbation it is easy (cf. ref. 2) to 
construct a unitary transformation eswhich transforms//0 + 7/inl 
into a Schrödinger Hamiltonian:

(3)

If we lake Hinl simply to be a scalar central potential ßV we gel 
the non-relativistic equivalent of the pseudoscalar matrix element :

-) L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78,29 (1950). This method 
was first applied to /?-decay by Herbst and Bushkovitch, Phys. Rev. 91, 442 
(1953).

3) Previous attempts have been made by T. Ahrens, E. Feenberg and 
II. Primakoff. Phys, Rev. 87, 663 (1953) and T. Ahrens, Phys. Rev. 90, 974 
(1953) to express the relativistic matrix element </|/Jy6L| i ) in terms of the non- 
relativistic matrix elements. The results are essentially different from those ob
tained here, and it also appears that some of the approximations involved cannot 
be justified.

4) T. Ahrens and E. Feenberg, Phys. Rev. 86, 64 (1952).
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< f\ ßy^ IO 2Å/<fl^^L|0 + \
/

- 4~ 2 < /■ I -Vf+ Vi) L ? • V IZ >.
(4)

VHere wc have omitted terms of the order in the first term.

Also Hie last term having the same selection rules as the second 
term will he neglected in the following.

If one transforms the total Hamiltonian H into a Schrödinger 
Hamiltonian one will get an additional term from H^v. However, 
this term vanishes since it is of the form°^

2'í75l8/5d]|í>- (5)

Both methods are thus identical, and this result can be used 
to show that one need not care about the operator Q. The for
mula (4) applies as well to the scalar potential ßV as to the sta
tic part of the vector potential V.

In the plane wave approximation (4) becomes

I < /'Ia •r ; I < > (l-)o + g 'M < /'I I ' > (¿1 /')»

I'XV,L)O +

(6.1)

+ 4 ‘M < /'I a/*  + V,L)„ (6.3)

where the terms are ordered according to selection rules, the 
second term in (6.1) being of the order of magnitude of the
(6.3) term. In (6.3) only the major term is included.

'I'he terms (6.1) correspond to the first terms (1.1) in (1). 
I'he terms (6.2) correspond to (1.2), and so on. This correspond
ence can also be seen directly by evaluating the matrix elements 
using single particle Dirac wave functions for the nucleons.

The relative order of magnitude of the terms (6.1) can also

5) This was pointed out to us by L. L. Foldy, 
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be found in this simple case. The result for a square well po
tential is

^£2 (7)

where E is the kinetic energy of the decaying nucleon. This 
means that for low Z the ratio of the first term to the second 
in (6.1) is of the order of + g)2. For heavy nuclei, however, 
this ratio will tend towards E2/(aZ/2 q)2, that is the terms will 
be of nearly the same order of magnitude. By q we denote the 

nuclear radius, p is the electron and g the neutrino momentum.
As regards the absolute magnitude of the matrix elements we 

find for the square well potential

(8)

which for heavy elements is of the order of magnitude 10 4. 
The smallness of this matrix element reveals the peculiarity of 
the pseudoscalar coupling. Furthermore, for the ratio of the 
two terms in (6.2) we find

2E
M ’ a*)

-> -> i (/p / i \
The term z ) ( V/cA)o is omitted in

(6.3),  because of the smallness of this ratio.
These considerations are limited to simple potentials. Ruder- 

man6) has shown that in the case of pseudoscalar meson theory 
with pseudoscalar coupling < f\ ßy51 z> may be large.

For the neutron decay the series expansion in (1) and (6) 
is not appropriate. The ^-spectrum of the neutron'’ may be cal
culated from either (1) or (6) by using plane waves for all 
particles. The inclusion of the momentum difference between

6) M. Ruderman, Phys. Rev. 89, 1227 (1953).
7) L. Michel, Proc. Phys. Soc. 63A, 514 (1950). 
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the neutron and the recoiling proton is essential to gel a non 
vanishing matrix element.

Thus one might expect that recoil effects add essentially to 
the contribution to allowed transitions from the pseudoscalar 
interaction. This is, however, not the case as can be seen in the 
following way. To calculate the recoil effect the true final stale, 
(/'|, must be represented in the rest system of the daughter 
nucleus, where the stale is represented by (/*'  | :

71- -:rt(i.. (to)

Here the recoil momentum is MAvn and the centre of mass 

coordinate is r(l\ After the substitution of (10) into (6), 
" i = 1

operators acting on two different particles have been neglected. 
Conservation of momentum requires that

(IO

and the result of operation with i>n on the lepton covariant L is

Thus we obtain

< fl An ¿IO -

i) ri«-;-1

(12)

(13.1)

I ', < I" I ", I i > ( V, /.)„ + 4 (1 -])</■' I 7 • Z- ’ ’ r,. I Í) ( V I.)„ (13.2)

This may also be seen directly in the case of single particle 
wave functions for the nuclei. In the low velocity approxima
tion for the Lorenz transformation we get
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(14)

The first exponential transforms the spinors while the second 
transforms the space part of the phase. By the insertion of (14) 
into (1) and the identification of corresponding terms in (1) 
and (6) one is again led to (13).

For the neutron the series expansion of the last factor in (14) 
is not appropriate, and the only contribution will arrive from the 
recoil term

fl exp (— ù\fun- r] fia- 'J L\i

since the term
exp (—L\i

vanishes for free particles.
As specific applications of the above estimates of the pseudo

scalar matrix elements we consider the relatively simple cases 
of allowed transitions with maximum spin change, and first 
forbidden 0 -> 0 (yes) transitions. In these cases one may restrict 
the calculations to a mixture of tensor and pseudoscalar inter
actions.

'fhe shape of allowed /î-spectra can easily be found from (13) 
and has been evaluated for A.I = ± 1 (no) transitions, 'fhe 
second term in (13.2) has been omitted. In the plane wave 
approximation we get

3hr 'I ->\i i

where g3 and g5 are the tensor and pseudoscalar coupling con
stants respectively. Il is seen that the main effect of the pseudo
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scalar interaction is proportional to (p2/W—q) and therefore 
large for large maximum ^-energies. Thus disintegrations like 
the He6 and B12 decays provide the most sensitive tests.

For (<75/g'3)/2 M = ± 1/20 the spectrum (15) has been com
pared with the experimental He6 spectrum8) in Fig. 1. Such a

with the experimental data for He8. The data are fitted best possibly to the curve 
corresponding to (gblg^)l2M = + 1/20.

value of f/5 would lead to a significant deviation from the ob
served spectrum and the ligure shows that

I ffa/ffa I < 100

represents an upper limit to gb.

8) C. S. Wu, B. M. Rustad, V. Perez-Mendez and L. Lidofsky, Phys. Rev. 
87, 1140 (1952).
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A comparison with the experimental B12 spectrum indicates 
that this limit may be lowered by a factor of two.

The Coulomb correction to the spectrum (15) is, apart from 
the usual factor F(Z, W), small for these low Z spectra.

The influence of the pseudoscalar interaction on first for
bidden 0 -> 0 (yes) transitions may be found also from equation 
(13). Petschek and Marshak have tried to fit the Ra E spectrum 
on the assumption that the transition is of this type and involves 
a mixture of tensor and pseudoscalar interactions. Their results 
depend essentially on a cancellation of large shape independent 
terms in the spectrum. Under such circumstances small terms 
like the second in (6.1) may be important and further invest
igation of this point is needed.

Neglecting this second term in (6.1) Petschek and Marshak 
derive

11 > w 13

which by means of the estimate (7) leads to |í7s/í73 | ** 160. Such 
a large value of g5 seems difficult to reconcile with the observed 
shape of allowed spectra (cf. (16)). However, it is stressed that 
the estimate (7) of the relative orders of magnitude of matrix 
elements is based on the assumption that the nucleons move in a 
simple potential.
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